Graph Neural Network Based Recommender
Systems for Spotify Playlists

Shone Patil, Jiayun Wang, Benjamin Becze

February 4, 2022

GitHub : https://github.com/shonepatil/ GNN-Spotify-Recommender-Project

1 Introduction

With the rise of music streaming services on the internet in the 2010’s, many
have moved away from radio stations to streaming services like Spotify and
Apple Music. This shift offers more specificity and personalization to users’
listening experiences, especially with the ability to create playlists of whatever
songs that they wish. Oftentimes user playlists have a similar genre or theme
between each song, and some streaming services like Spotify offer recommen-
dations to expand a user’s existing playlist based on the songs in it. Using
Node2vec and GraphSAGE graph neural network methods, we set out to create
a recommender system for songs to add to an existing playlist by drawing infor-
mation from a vast graph of songs we built from playlist co-occurrences. The
result is a personalized song recommender based not only on Spotify’s commu-
nity of playlist creators, but also the specific features within a song.

2 Data

Our song song recommendation system will work with just any music dataset
that contains a community of users with playlists that they have created. The
most popular of these would likely come from Apple Music, Spotify, Youtube, or
Amazon as they are by far the most used music streaming services in America
(that support playlist creation) as of January 2021 [1]. In all the markets Spotify
and Youtube contend for the most used, but Youtube is not solely a music
streaming service, and they do not release data for public use as readily as
Spotify does, so we chose to go with Spotify as our dataset.

In January 2018, Spotify released a vast dataset containing 1 million playlists
created by users between January 2010, and October 2017 for the purpose of
an online data competition to try to predict subsequent tracks within a playlist
[2]. Though the competition is over, we used this dataset of user’s playlists

to try to create personalized recommendations for a user’s playlist. Currently
we have taken the first ten thousand playlists from this dataset to train our
model on, though scaling up to include more playlists (and subsequently songs)
is possible, but currently not necessary for us to demonstrate the efficacy of this
recommender.

Features

From these ten thousand playlists, we extracted all of the unique songs, which
comes out to around 170,000 unique songs. We then utilized the Spotify de-
veloper public API to query information about each of these songs and obtain
features for our model. These features include Spotify’s own extracted numerical
data from each song, of which we kept the following [3]:

e Danceability — Numerical - How suitable a track is for dancing.
Energy — Numerical - Intensity and activity.
Loudness — Numerical - Overall loudness of a track in decibels.
Speechiness — Numerical - Presence of spoken words in a track.
Acousticness — Numerical - How acoustic the track is.
Instrumentalness — Numerical - How instrumental the track is.
Liveness — Numerical - The presence of an audience in the recording.
Valence — Numerical - The musical positiveness conveyed by a track.
Tempo — Numerical - Estimated tempo in beats per minute.
Duration — Numerical - Duration of the song in milliseconds.
Key — Categorical - The key that the track is in.
Mode — Categorical - Major or minor modality of a track.
Time Signature — Categorical - Estimate of time signature.

For our recommender system to successfully provide personalized recommen-
dations, we work under the assumption that when users create playlists manu-
ally, they generally will add songs that are similar to each other in some ways.
A playlist could be comprised of songs pertaining to a specific genre like dance
music or r&b, but it could also reflect a specific mood like happy songs that
make you want to dance, or quiet sad songs. So within a playlist, we would
expect the measures of the features above to be quite close to each other. To
ensure this we examine the distribution of variances of the features from a ran-
dom sample of songs, versus the distribution of variances from a random sample
of playlists.

darweabiity

BO3S BOID DAIS BAn

aoness

SIS bOER

acousticness

0
A 08F 0o 04F BlE

alance

imstrumentainess

Figure 1: Variance distributions over 200 random samples of 70 songs each.

darveabiity Frudnesy
P
0
«
0
i L]
a5 &
P
n
° 0
aD0E 0430 DA1S DAID ONZS QOGN QOS5 G0N tnoes L T 15
speechiness acousticness imstrumentainess
L ar
& e
= 08
« m
= o
n @
w n
® 0
$DI0 DAES GUED GO1S G DS QU0 DAl 064 G0E 0BE G0 DL 014 BLE 0N NEZS DOSR BOIS DA UK G0 GO
Iunass aluncs wmpe
&
@
P
B
#
@
u
n
N E
w n
1 04 —
@ a5 0% 075 L 135 150 195 290

Figure 2: Variance Distributions of 200 randomly sampled playlists.

For comparing the variances of song features, we sampled 200 random playlists
and compared the distribution of variances to 200 random samples of songs
from a population of all songs. Each random sample was 70 songs, the average
length of the playlists that we had sampled. When we compare the variance
distributions from Figure 1 to Figure 2, we can see that there is a tendency for
many of the features to be right skewed, indicating an overall smaller variance
for playlists. This supports our hypothesis that songs within playlists change
much less than randomly selected songs. There are additional measures and
figures included in the EDA notebook in src/analysis.

Graph

The graph we created consists of about 170,000 nodes corresponding to each
unique song, and a vast set of edges connecting the songs that appear in a playlist
from the first 10,000 playlists we selected. To create an effective recommender,
we needed a way to rank the closeness of two songs, so as our aggregate we
decided on co-occurrence of songs within playlists as the edges between them
with a weight on each edge representing the amount of co-occurrences across all
playlists. It should be noted that this method of connecting songs through co-
occurrence can be considered as a hyperparameter for the entire pipeline. There
are some other possible ways of determining edges and edge weights in the graph
such as connecting nodes based on how close they appear to each other within
a playlist, or how many times two songs that appear together in a playlist were
not skipped. We chose simply co-occurrence for our graph because we want to
capture node neighborhoods of songs that are alike for our recommender, and we
assume that people will create playlists of songs that are at least somewhat alike.
We believe this is sufficient for this purpose, but with future optimizations and
time to re-create graph structure, trying different methods for graph creation
could yield potentially beneficial results. Each node also contains a feature set of
the features that are described above. With weighted edges and node features,
we would have enough data to create a personalized link prediction problem.
Our result was a weighted adjacency matrix with the following measures:

Category Measure
Nodes 461880
Edges 106486690
Average Degree | 461.1011
Features 13

Figure 3: Descriptive Statistics for Graph Structure.

Though the graph is a network created from the inputs of various users,
it holds a few advantages over a typical collaborative filtering network rec-
ommender. The weighted edges were created from information about the co-
occurence of songs between the many playlists that we have sampled, but the
nodes themselves are unique songs that contain descriptive audio features about
themselves. By incorporating these features as well as the weights on the edges,
we can begin to define more general groups of songs (playlists) that are based
on more than just user input, but about the nature of the songs themselves.

Playlist 2
Playlist |

O
ST
e O

song

Pair of songs in
same playlist

/

| 1O

Pair of songs in
both playlists

L~
/
Wi

|

Figure 4: Graph Covariance.

Using a graph for our recommender also adds a solution for cold start issues
that many existing recommenders have. GraphSAGE, an inductive algorithm,
aids with this issue in that it will be able to create a node embedding for an
unseen node using the information that was gathered from node neighborhoods
from the training data. Where a traditional recommender may fail in these type
of problems, GraphSAGE can readily add new data and create edge predictions
for them because of the embedding that can be generated from its features as
well as the neighborhood that it falls in, which in this case would be what
other songs appear in the playlist(s) that the new song has been added to.
This inductivity also makes re-training of the dataset unnecessary whenever
new nodes are introduced, which for Spotify-a music streaming service that
constantly hosts new music from creators-is a scalable and realistic approach.

3 Methods and Literature

Node2Vec

One of the earlier graph-based methods is the node2vec which uses biased
random walks to create low dimensional space representations for nodes [4].
This algorithm aims to preserve node neighborhood networks for the node em-
beddings and it allows for more accurate classification on nodes because of these
neighborhoods. The algorithm utilizes biased 2nd order random walks at the
core of its algorithm with p and q tunable parameters to determine the proba-
bility of each node subsequent from the original of being visited. Tuning of these
parameters allows for the user’s choice of having a more local walk emulating
bread-first sampling, or a more explorative walk emulating depth-first sampling.
The p parameter determines the probability of a node being revisited right after

a step, where a high value makes it less likely that the node is revisited, pro-
moting a depth-first random walk. The q parameter controls the probabilities
of stepping to an unvisited node, where a higher value is biased towards local
nodes and a smaller value promotes visiting nodes farther from the original.

Figure 5: Grover and Leskovic visualization of the node2vec random walk [4].

[}

“t” is the starting node, “v” is the current node in the random walk.

In our edge prediction model, we experiment with node2vec to create node
embeddings which we then input into a KNN model to generate our predictions.
We compare that with the following GraphSAGE method.

As a baseline model, we built Node2Vec embeddings for songs in the graph
based on the weighted connections of co-occurrences in playlists that existed.
Using these node embeddings, we fed them into a K-Nearest Neighbor model to
find similar embeddings to serve as recommended songs for each song. We ex-
plored this model because this is a common method used to encode graph data
into a single feature set alongside song features and doesn’t suffer from scala-
bility issues like Graph Convolutional Networks do. It also was able to account
for weighted edges that we created in our song graph. After finding similar em-
beddings for each song, we treated those as predicted edges to evaluate against
ground truth to compute precision and recall metrics. We also aggregated the
closest embeddings to be incorporated into a recommender. Some drawbacks
we expected were performance and accuracy of Node2Vec embeddings in rep-
resenting neighborhoods as well as runtime issues when computing K-Nearest
Neighbor on heavily connected songs with high degrees.

GraphSAGE

GraphSAGE is a framework for node embeddings that separates itself from
existing transductive methods that require every node to be present in the
training process by proposing an inductive approach to create node embeddings.
This is a much more scalable approach that is ideal for large networks that don’t
all fit into memory, and that can be continuously updated.

aggregator;

Figure 6: Hamilton, Ying, and Leskovic’s visualization of feature aggregation
from a node’s neighborhood [5].

The graphSAGE algorithm’s inductive ability comes from its use of neighbor-
hood feature aggregation for a node to create an embedding for that node that
will capture information about its neighborhood. Aggregation can be done in
a number of ways, the most common being LSTM, mean, pooling aggregator
functions. Depending on the aggregator chosen, graphSAGE will capture differ-
ent information from its neighboring nodes. It is the neighborhood aggregation
that makes it so that when a new node is added to the graph, its embedding
can be generated from its features and neighboring nodes, rather than having
to create new embeddings using the entire graph structure over again.

L(ZU) = _ZOQ(U(ZEZU)) -Q- EUW,NPn(U)lOg(O'(_Z’ijUn))

The above loss function an unsupervised loss function used when generating
embeddings [5], where u and v are two neighboring nodes, Q is the number
of negative samples, v, is a negative sample, ¢ is the sigmoid function, P, is
the negative sample distribution, and z, are the representations. For an edge
prediction problem, our negative samples are generated from the non-existing
edges between each song node.

Based on the graph of all songs with links weighted by co-occurrences in
the playlists, we compute GraphSAGE embeddings for each song with a mean
aggregator. Specifically, given the original node features, each step of Graph-
SAGE will sample from the neighbors of each song and average the information
of those samples. With those new representations of each song on hand, we then
feed those embeddings into a multilayer perceptron predictor. For each pair of
nodes in the graph, the predictor concatenates their corresponding embeddings
as the edge feature, runs those embeddings through fully-connected layers and
outputs a scalar score for each edge of the given graph.We then use binary cross
entropy as the loss function, which compares the predicted probabilities of the
edge existence and the ground truth and penalizes the probabilities based on
the difference.

We employed the GraphSAGE model since it provides a general and inductive
framework which leverages node features to efficiently generate embeddings for
large graphs with rich node attribute information, which matches our case of
Spotify million playlists. For the downstream link prediction task, we exper-
imented with dot product predictor and multilayer perceptron predictor and
observed better loss update with the multilayer perceptron.

Recommender

With the trained embeddings of songs in hand, given a playlist with k seed
tracks, for each seed track s and each the candidate track ¢ for recommendation,
we fed the embeddings of s and ¢ into the predictor to compute the predicted
scores, which indicated the probability of a edge existing in between. After
computing the scores for each seed song, we ranked the scores in descending
order and prioritized the recommendation of those songs that have the highest
probability of a link with the seed tracks. Essentially used the score learned from
a link prediction model to determine songs to recommend based on candidate
tracks.

4 Results

Model AUC Precision | Recall

Node2vec - KNN (K=50) | 0.70303 | 0.54797 0.23445
GraphSAGE - MLP Train | 0.87212 | 0.97296 0.75723
GraphSAGE - MLP Test 0.86339 | 0.83424 0.75982

Figure 7: Metrics for GraphSAGE/MLP and Node2Vec/KNN
Link/Edge Prediction Metrics

After running these two models and their respective embeddings, we found
that the GraphSAGE embeddings with the MLP predictor gave the highest
accuracy. This is as expected, as Node2vec embeddings are quite a bit less
complex than the convolutional learning layers that are used in the GraphSAGE
embeddings. The high precision entailed that the model was good at predicting
edges between songs that should exist for a given song and limited false positives
overall. We were more interested in recall as it told us the ratio of predictions
out of all edges that do exist between songs. This was important as we believed
the strongest recommender would first pull from existing edges that come from
a song but aren’t necessarily in a given playlist yet. The decrease in precision
from Train to Test we noticed could have been due to overfitting since the recall
stayed the same. We think the model likely recommended relevant tracks but
not in the set of expected results needed for high precision. We saw improvement
in both categories and also saw higher AUC scores in GraphSAGE - MLP. The
AUC score increase showed better performance in predicting true positives and
true negatives over all the data. We can also see this in the ROC curves below
that show GraphSAGE - MLP to have a curve closer to the top left than the
Node2vec - KNN curve.

o0 02 04 0.6 0.6 10 0.0 olz 04 DIG OIS 10
asitive Rate False Positive Rate

Figure 8: ROC Curves for Node2Vec/KNN (left) and GraphSAGE/MLP (right)

10

Training Loss for GraphSAGE/MLP Edge Prediction (2 epochs)
0.70 -

065

060

Loss

055

0.50 -

045 -

0 20 40 G0 B0 100 120 140 160
Mini Batches

Figure 9: Training Loss for GraphSAGE/MLP Model over 2 epochs (82 mini-
batches each)

The above graph is the record of training loss for the edge predictions when
training the MLP model, where we trained for 2 epochs, with 82 mini batches
for each epoch. The reason for stopping at 2 epochs is that we saw the loss
begin to stagnate and oscillate around 0.48. To avoid overfitting the model,
we ended training at this point. We had also noticed the validation AUC still
increasing in spite of no training loss decrease so this gave us another reason
to stop early to prevent overfitting on the validation set. To help with training
speed, we added options to use the CUDA framework and utilize GPUs during
mini-batch training.

11

Scatter plot of Seng Embeddings T-SNE

Figure 10: T-SNE plot of GraphSAGE embeddings in 2 dimensions on the
170,000 song subset

The above T-SNE plot shows the different embeddings of node neighborhoods.
We used embeddings for a subset of 170,000 nodes for better readability, but
the model and the process are the same. We have plotted this with a small
opacy to show the different concentrations of embeddings, as the graph is very
dense. Though the plot does not discern groups between a specific feature, it
still serves to show the different groups that were captured by the graphSAGE
embeddings.

Playlist Recommendation Results

All of the following are done on recommendation sets for 200 random playlists.
The recommendations are done as sets of the top recommended songs for each
unique song in the playlist. For the example below, each song in the playlist
has one song in the recommendations list that is the top song to recommend to
it that isn’t already in the playlist.

12

e Input Playlist

— File Location: data/mpd.slice.9000-9999.json

— Name: ‘Happy :)’

— PID: 9360

— Songs:

* Lisztomania—Phoenix
Rabid Animal—Lake Street Dive
Dancing On Quicksand—Bad Suns
The Sweet Escape—Gwen Stefani
Ants Marching—Dave Matthews Band
Rock the Casbah - Remastered
Stare Into The Sun—Grafliti6
Feel It Still—Portugal. The Man
x anywayican—WALK THE MOON

e Recommendations:

— Songs:
John Cougar, John Deere, John 3:16—Keith Urban
The Tiki, Tiki, Tiki Room — The Mellomen
Crazy In Love (feat. Jay-Z) — Beyonce
Woman — Harry Styles
Sweet Caroline — Neil Diamond
Before You Start Your Day — Twenty One Pilots
X (feat. Future) — 21 Savage
Rock and Roll All Nite — KISS
T-Shirt — Migos
HUMBLE. — Kendrick lamar

* K X X X X X

* X X X X X X X X ¥

Evaluate the Recommender: R-Precision

Given a playlist, we partitioned the list with half of the tracks as seeds and the
rest as masked relevant tracks (i.e our recommendation goals). The R-Precision
was calculated as the number of songs that belongs to the intersection of our
recommended candidate tracks and the masked relevant tracks, divided by the
number of masked relevant tracks. The metric is averaged over all the playlists
to test.

R — precision = 7| G0 Ry |
ey

We randomly sampled 300 playlists and ran the recommender on each. Each
playlist got the same number of recommended candidate tracks as the number
of seed tracks given. The averaged R-precision of these 300 playlists was about
0.0635. This indicated that the recommender will be able to throw out about
6% of the songs that are exactly the ones already in the existing tracks in the
target playlists.

13

To further understand the performance, we individually looked at playlists
with high R-precision (i.e > 5%) with the lower ones. We observed that for
those playlists with higher R-precision, the average degree of the songs (i.e
average number of songs that appear together with this song in the playlists)
was significantly lower than those with lower R-precision.

Average degree of seed songs in playlists of high and low R-Pracision

35 s high
low

1] 2500 5000 7500 10000 12500 15000 17500 20000
Average Degree

Figure 11: Average degree of seed songs in playlists.

14

Proportion of Existing Neighbors in Generated Graph

10

Figure 12: Distribution of connectivity proportion in recommended playlists.
Song Connectivity in Song Recommendations

Checking all pairs of nodes in the recommended set, and this is the proportion
of those n? pairs that are actually connected in the main graph (where n is the
number of songs in a playlist). We can see that there is a seemingly normal
distribution, where most of the playlist recommendations have about a 0.5 rate
of neighbors existing together. Though there is some higher connectivity for
some playlists, there are more that seem to be less connected, as indicated by
the very slight right skew. Having this metric is important, because it serves
as a metric for how well the recommended playlist was able to emulate the
relationships between songs in the original playlist. Ideally, we would have
higher values than 0.5, but we suspect that some of this is due to our subset
of only about 460,000 songs. Though they have not released a specific number,
in reality Spotify hosts more than a few million songs on their platform, which
allows for many more complex neighborhoods to form. Were we to scale up
to using every song and playlist co-occurrence connection between them, we
suspect there would be a much higher connectivity rate in the recommendations.
Unfortunately, with our resources and the scope of this project, we are unable
to access all of the songs Spotify has and we don’t have computing resources for
such a dataset.

15

Feature Distribution in Recommendations

The following tables and histograms are drawn from taking the variance, av-
erage, average difference of numerical features in consecutive song pairs, and
difference in range from the original playlists and from the recommended sets.
The differences between these measures are then taken and the resulting distri-
bution is plotted, indicating the difference in measures for each audio feature.
The table shows the average of the distribution of differences for each measure

as well.

Feature Variances | Averages | Consecutive Dif. Avg. | Ranges
danceability 0.0096 0.0695 0.0376 0.1528
energy 0.0146 0.0885 0.0443 0.1748
loudness 0.2413 0.2902 0.1731 0.9217
speechiness 0.0083 0.0415 0.0487 0.1852
acousticness 0.0287 0.1132 0.0742 0.1976
instrumentalness | 0.0185 0.0477 0.0557 0.2886
liveness 0.0086 0.0296 0.0378 0.1493
valence 0.0104 0.0831 0.0413 0.0761
tempo 0.2877 0.2964 0.2427 0.748

duration 0.1825 0.1966 0.1427 0.8874

Figure 13: Averages for differences in metric between each playlist and its cor-
responding recommended playlist.

16

£y
w0
0
50
@
0

danceability

energy

loudness

speechiness

0
000 001 002 003 004 005 006 007 008

acousticness

0005

0010 0015

0020

g 8 8 8 3 8

15

0
0000 0025 0.050 0075 0100 0125 G150 0175

liveness valence tempo
100
n
80]
50
@
w0
40 30
0
0
1
0 o
000 001 002 003 004 005 006 007 008 000 025 050 075 100 125 150

Figure 14: Figure 14 .

17

danceability energy loudness

0
000 005 010 015 020 025 030 0o 01 02 03 04 00 [10 15 20 25

speechiness acousticness instrumentalness

o
000 002 004 006 008 010 012 O0l4

liveness valence

0
000 005 010 015 020 025 030 035

Figure 15: Figure 15 .

In general, we saw that there was little change in the features between the
recommended song sets. For most of the variance and average differences the
majority of the distribution was below 0.1, especially for the variance of dance-
ability, energy, acousticness, valence, and liveness. There were, however, a few
features that did seem to change more between the recommended song sets, such
as tempo and duration. These two features were somewhat expected to have a
more spread out distribution, as one would not typically expect a playlist to have
songs of all very similar length and tempo. Speechiness was the least changing
feature, which was a good sign, because oftentimes very speechy playlists consist
of rap-heavy songs, and so the recommended songs seemed to reflect that.

For future iterations of the model, it may be beneficial to try training with
some of the less relevant features like duration and tempo removed. At the
moment we keep them in to see if they can capture more playlist information.

5 Discussion
We set out to use graph based methods to create Spotify song recommenda-

tions for playlists and found promising results overall. We first looked at link
prediction metrics to determine how our model performed at finding edges that

18

should already exist between songs as co-occurrence in playlists. The signifi-
cant boost in AUC score, precision, and recall in GraphSAGE over Node2Vec
gave us confidence that more of the graph structure was being learned and po-
tential recommendations as a result could be more useful going forward. We
think Node2Vec-KNN did worse, probably due to the embeddings created by
Node2Vec not being accurate enough. In this highly connected graph, the ran-
dom walks could have varied significantly enough to cause the vector embed-
dings to be less representative of the graph. The intent was to better encode
the graph structure using strategies like GraphSAGE while also retaining song
specific features that could traditionally help in song recommendation as we
assumed similar songs had less variance in features such as acousticness, beats
per minute, or danceability.

When it came to seeing the playlist recommendation results and the actual
tracks that were recommended based on the top candidate tracks for each given
song in a sample playlist, we had mixed outcomes. In many cases, the model
was able to recommend songs in similar genres, by similar artists, and even
specific albums. In other cases, however, the recommendations tended towards
largely popular songs and artists without much genre overlap as we wanted.
We think this could be due to the highly connected nature of the graph and
the heavier weights being put on edges connected to popular songs. In the
GraphSAGE neighborhood sampling, songs with few edges may be close in
proximity to popular songs through our heavily connected graph structure and
thus could have similar neighborhoods even though genres and style might be
vastly different.

One thing we definitely would want to experiment with is different graph
structures based on not only playlist co-occurrence, but also album or artist
co-occurrence where edges exist between songs if they are in the same album
or by the same artist. This would result in a heterogeneous graph that encodes
varying weights of information in each edge. We also think that lowering the
connectivity by creating edges in a more restrictive way could help with the
GraphSAGE neighborhood sampling for less popular songs. Connectivity likely
leads to higher importance on popular songs, especially for recommendations
and we think the model could personalize better if it functioned on a more
representative underlying graph.

For future improvements on obtaining node neighborhoods based on song fea-
tures, we would like to incorporate a categorical feature that is representative
of a song’s genre. This could however be somewhat problematic, as there has
always been some debate around certain songs’ classification to certain genres
already, and Spotify does not provide features about a song’s genre. Incorpora-
tion of such a feature could yield much better results, as many themed playlists
seem to be centered around one or two similar genres. Future work could make

19

use of a classification model for basic song genres, and utilize it in the prepro-
cessing for playlist recommendation to add another categorical feature.

6 Conclusion

The business case for this approach to playlist recommendation, is that once
the graph is built, it is able to add new data concerning both new nodes and
new playlists. GraphSAGE is an inductive approach; re-training of the entire
model would not be required. Because Spotify is ever growing, obtaining new
users and new songs from artists each day, an approach like this that can easily
evolve with growth is needed. Our project provides somewhat of a proof of
concept that playlist recommendation with inductive graph learning approaches
works, though there is room for improvement. We feel like the idea works in
certain instances very well and could help music distribution services find more
powerful ways to personalize for users. We tried to put emphasis on not only
naively recommending songs from the same artists but also allowing discovery
and different styled songs to surface as new avenues to explore.

References

[1] Nguyen, Hoang. “The Most Popular Music Streaming Platforms in Key
Markets Globally.” YouGov, YouGov, 18 Mar. 2021,
https://yougov.co.uk/topics/media/articles-
reports/2021/03 /18 /services-used-stream-music-poll.

[2] “Spotify Million Playlist Dataset Challenge: Challenges.” Alcrowd,
https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-
challenge.

[3] “Web API Reference: Spotify for Developers.” Home,
https://developer.spotify.com/documentation /web-api/reference/.

[4] A. Grover and J. Leskovec. node2vec: Scalable feature learning for net-
works. In KDD, 2016. https://arxiv.org/pdf/1607.00653.pdf

[5] W. L. Hamilton, R. Ying, and J. Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In NIPShttps://arxiv.org/pdf/1706.02216.pdf

[6] T. N. Kipf and M. Welling. Semi-supervised classification with graph con-
volutional networks. In ICLR, 2016. https://arxiv.org/abs/1609.02907

20

